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The topological description of the neighborhood of the constituing atoms in a dense ran- 
dom material (liquids, glasses) is of a major importance for their characterization. We discuss 
an algorithm for the Delaunay construction which is global and independent of the dimension 
of the space and derive from it the full dual Voronoi tesselation by an original realization of 
duality. 0 1988 Academic Press, Inc. 

1. INTRODUCTION 

An intense interest, experimental and theoretical, is devoted to random dense 
materials (liquids [ 11, metallic glasses, glasses [2]). These materials possess no 
long-range order, but a rather extended short-range order constrained through the 
packing; and their packing fraction can be quite as high as the densest regular 
lattices. The experimental diffraction measurements (X ray, neutrons, . ..) allow one 
to determine the radial distribution function (RDF) of these materials, (i.e., the 
angular averaged density correlation function 4(r) 

4(r) = G-W dr + r’h. (1) 

One may refer to reviews [2], or lecture notes [3]. This information is often insuf- 
ficient to explain the properties of these materials; therefore, efforts have been made 
in several ways to build models providing a better insight into the structure of 
dense random materials. 

In the following, we will restrict our discussion to materials for which the models 
of dense packing of random spheres with rather isotropic interactions between 
atoms are adequate. Bernal [4] has been a pioneer in this domain, building ball 
and stick models, and later computer models. The smallest densely packed cluster 
of identical hard spheres is a regular triangle in the plane (dimension 2), a regular 
tetrahedron in dimension 3, and, more generally, a d-dimensional simplex. This 
local unit is a seed of icosahedral symmetry, which cannot tile the Euclidian 3D 
space [S] in a simple way. This frustration leads to the disorder and the 
amorphous structures. 
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Bennett [6] proposed an algorithm which simulates the growth of amorphous 
materials by condensation of atoms from the vapor phase onto a growing seed, 
obeying the local regular tetrahedral symmetry. In order to avoid dendritic growth, 
the adsorption site selected for condensing the atom from the vapor phase is the 
closest “pocket” from the center of the cluster. A pocket is a void or cavity in or on 
top of the condensed cluster, where it is possible to insert a new atom in close con- 
tact with its neighbors. Let us mention other authors which used and developed this 
class of algorithms [7-IO], with or without a relaxation of the structure obtained 
by a partial minimization of the total energy of the system (described usually by 
pair interactions between atoms). This algorithm suffers from the defect that the 
density of the material is inhomogeneous and decreases with the size of the cluster. 

Other classes of algorithms use the generation of a random cluster with 
prescribed density by sowing nonoverlapping atoms in a predefined volume and 
then performing relaxations of density and positions of the atoms as quoted above 
[IllI. 

On the other hand, the molecular dynamics models simulate the formation of 
glasses by rapid quenching from the melt [12]. However, the quenching rates 
realizable on a computer are several decades higher than those attainable 
experimentally. 

It is also possible to form ,amorphous materials by introducing a sufficiently high 
density of linear defects into a perfect material [13]. 

There exist now, also, deterministic models for these classes of materials, based 
upon the argument originally given by Sadoc [14], that perfect packing of regular 
tetrahedra could be achieved on curved space manifolds (the regular (3 3 5} 
polytope on the sphere S4, see Coxeter [15]). 

The flattening process to the frustrated 3D Euclidian space [16] introduces a 
network of linear defects (dislocations and disclinations) discussed by Nelson ef al. 
[17, 181. Closely related, the quasiperiodic icosahedral phases alone become a 
subject of intense activity [ 19-241. 

Once the geometrical positions of the atoms in space are known, the Voronoi 
construction [25,26] provides a full description of the topological neighborhood of 
an atom and a simple covering (honeycomb) of the space. Numerous computer 
implementations have been proposed recently [27-291. 

The dual Delaunay [ 181 construction [30] has been implemented in the case of 
liquids in [31, 321, and the corresponding algorithm published [33]. It is one of 
the most efficient; this is due to the fact that the Delaunay cells are perfect simplices 
in general, whereas the Voronoi cells are general convex polytopes, which belong to 
the class of simplicial complexes [34]. 

Our aim in this paper is to propose an algorithm which works in any dimension, 
even for manifolds. It performs the global Delaunay construction in any dimension; 
its main virtue is to give also a constructive way to realize the duality between both 
honeycombs and to use it in order to derive the whole Voronoi tesselation by 
inspection. This seems to be a new result, which also achieves a breakthrough for 
the computational aspects of this problem. It may be used independently of our 
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realization of the Delaunay tiling; it avoids the construction of a Voronoi cell as the 
convex hull of its vertices. Both phases the Delaunay tiling and the Voronoi tiling 
are global and thus vectorizable; it constitutes therefore a progress over the sequen- 
tial approaches [35, 361. Our realization of the Delaunay tiling is merely a 
generalization of the work of Ogawa et al. [33] to any dimension and a sim- 
plification of their multiphase algorithm into one phase. It has therefore improved 
performances, even for the realization of the Delaunay tiling itself. But we hope that 
our construction of the Voronoi tesselation by an original implementation of 
duality will be appreciated as real progress. 

Let us mention also that even though our introduction is centered in the field of 
amorphous materials, these constructions are also pertinent in many other fields of 
science (astronomy, geology, biology), as quoted in [33]. 

2. DEFINITION OF THE VORONOI AND DELAUNAY DUAL TESSELATIONS 

A point x belongs to the Voronoi cell of atom i located at position xi if it is closer 
to xi than to any other point j of the system 

XE Vi0 IX-Xjl d IX-Xjl, whatever j. (2) 

This leads to a set of linear inequalities defining the convex polyhedron Vi (which 
belongs to the class of simplicial complexes in the terminology of algebraic 
topology [34]) around each site xi: 

x. (xj- Xi) < gxj+ Xi). (xj- Xi). (3) 

Alternative constructive methods for any dimension are devised in [2629]. We 
recall the definition of a simplex in dimension d: it is the convex hull of a set of 
(d+ 1) points; it is nondegenerate when its volume is nonvanishing. 

The dual Delaunay construction is a tiling of the space by simplices whose 
vertices are the original cluster points xi, with the following property: 

THEOREM 1. A d-dimensional simplex S,, i2, ,,,, id+, belongs to the Delaunay 
tesselation in a d-dimensional space if no further vertex but the generating ones fall 
into the d-dimensional circumsphere to the simplex. 

The simplex S is characterized uniquely by the set of indices of the vertex points 
. . 
11, 12, . ..> Id+ 1. It is even possible to orient positively the simplices, by defining the 
ordered simplex i, < i, < . . . < id+ 1 and all those related by an even permutation as 
positive; it is also possible to classify and order the simplices, with the preceding 
convention, into lexicographic order (which allows fast search and ordering). But 
we have developed a nonalgebraic version here. 

The center of the circumscribing sphere of simplices in the d-dimensional space is 
a vertex point of the dual Voronoi graph, which corresponds to the center of a void 
between adjacent atoms. In the case of packing of spheres of unequal radii, it may 
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“0 B2 

FIG. 1. In the case of two unequal balls (0, and D2), the Voronoi plane may be defined as the 
bisecting plane of segments B, &, instead D, D2 as in the usual case. This ensures that the Voronoi 
vertices are centered in the voids between the spheres. 

be interesting to modify the definition of Voronoi cells in order to preserve this 
property: the boundary plane of the Voronoi cell bisects the segment outside the 
spheres joining the centers of two spheres (Fig. 1). In this way it coincides with the 
common tangent plane in the case of touching spheres; but the usefulness of the 
circumscribed sphere to a Delaunay simplex is then weakened, since the center of 
the sphere does no more coincide with the dual Voronoi vertex point. We present 
also in Section 3 an original application of the duality of honeycombs for a fast and 
straightforward construction of the full dual Voronoi tesselation by inspection only, 
once the Delaunay tiling is known. 

3. A GLOBAL CONSTRUCTION OF THE DELAUNAY TESSELATION 

There exist already published algorithms in 2, 3, or higher dimensions for the 
construction of the Delaunay graphs [31-333. 

First, we show how to build the smallest d-dimensional circumscribing sphere to 
a &dimensional simplexe (x,, . . . . xdi). Let c denote its center, and r its radius. Then 

r* = (c - x0)2 = (c - x*)2 = . . . (c-q)*. . . = (c - Xdi)2 (4) 

has to be minimal. This is equivalent to the standard Lagrange problem: 

r* = (c - xo)2 minimal (5) 

subject to the di constraints: (c - xi)* = (c - x0)2, i= 1, di. W 

The constraints are in fact linear forms in c, which describe the bissecting planes to 
the segments (x0, Xi): 

(Xi - x0) . (c - x0) = f(Xi - x0)‘. (6b) 
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Thus, we obtain for the coordinates of the center c of the circumscribing sphere: 

I 

CzxO+ 1 pi(Xi-X0)* 
i=l 

(74 

The set pi is the solution of the linear system: 

f (xi-Xo).(xj-Xo)pj=f(x;-Xj)Z. i = 1, di. (7b) 
j=l 

We propose here a global construction, which is based on the recursive property 
of Theorem 1 which we extend in the following way: 

THEOREM 2. If no further point falls into the smallest d-dimensional circumsphere 
to a di-dimensional simplex (0 6 di $ d), this simplex belongs to the Delaunay tiling. 

We illustrate this theorem on Fig. 2. The proof is: let b be the d-dim. 
circumsphere to such a di-dim. simplex S; then b is contained in the reunion of the 
intersections of b with the d-dim. circumspheres {B,} to the d-dim. Delaunay 
simplices containing S 

b c U (b n B,). (8) 

No points other than those generating S (thus b) are contained in any such inter- 
section b n B,, by definition of b. 

We qualify as “normal” a tile satisfying Theorem 2. The vertices, which are 
Delaunay tiles of dimension 0 and the usual Delaunay tiles of maximal dimension d 
are normal. Indeed, there is a null sphere circumscribing each vertex, and 
Theorem 2 is equivalent to Theorem 1 for the maximal dimension d. The normality 
of Delaunay tiles of intermediate dimension 0 < di < d is only a sufficient condition 
(cf. Fig. 2). 

FIG. 2. An illustration of the theorem (9) for a 3-dimensional tesselation. The segment D,D, is a 
l-dim. Delaunay tile, which is part of the 3-dim. Delaunay tesselation, if no further Delaunay vertex falls 
within the 3-dim. circumspheres (centered at V,) to DID,. 
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In the following, we use two operations: the first, which we call P like “Pyramid” 
or “Primitive,” allows to build a (di + 1) simplex by adjoining a further point to a 
d-dim. simplex, and by checking its normality; the second, B like “Boundary,” is to 
build all (di- 1) simplices bounding the original &dim. simplex. This is done by 
dropping out one index in the ordered list of the (di+ 1) vertices generating the 
original simplex; we obtain (di+ 1) such (di- 1)-dim. tiles, corresponding to all the 
possible positions of the dropped index in the original list. All tiles obtained as a 
part of a normal tile must also be considered as valid Delaunay tiles, even though 
they are not normal. 

We propose the following algorithm to build the whole Delaunay tesselation. 

ALGORITHM 1. 

(1) Initialize the ordered list of tiles by the original vertices; let all of them be 
unmarked. 

(2) If no more unmarked tile is available, stop; else proceed. 
(3) Select an unmarked tile t; mark it; let its dimension be di; 

(3.1) Revise the list of tiles by new normal (di + 1 )-dim. tiles built from r by 
operation P; let them be unmarked. 

(3.2) Revise the list of tiles by the new (di- l)-dim. tiles not yet in the list, 
obtained from t by operation B; let them be unmarked. 

(4) Repeat from (2). 

We prove the validity and the performances of this algorithm, by comparing it to 
that of Ogawa et al. [33]. 

First, there exists at least one d-dim. Delaunay tile for each vertex which may be 
built by repeated primitive operation P upon it [33]. Here, we need only one for 
the whole tesselation. Second, all Delaunay tiles will be obtained, since the d-dim. 
tiles will be exhausted by repeated operations of B and P on the unmarked d-dim. 
tiles already in the list. For a (d- 1)-dim. tile “all” in step 3.2 reduces to “one, if 
any.” All other tiles may be obtained by the operation of Boundary, if not obtained 
earlier. This is realized naturally, just by selecting the last unmarked tile in step 2. 
The lexicographic order is useful in several aspects: it allows fast search for the 
existence of a tile and it also allows updating the list with new tiles, the order being 
conserved. Moreover, it provides a natural labelling for the tiles: 

DEFINITION 1. The dimension di of a tile and its index i among the di-dim. tiles 
entirely characterizes a tile, which we designate as (di : i). 

Once the families of Delaunay simplices are completed, it is possible to build 
trees, which denote the parentship between simplices of adjacent dimension, 

(resp. 
(di + 1 : j) is a child of (di : i) if it contains (di : i). (9) 

(di- 1 : j) is a parent of (di : i) if it is contained in (di : i)). (10) 
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It is only necessary to build the tree of children, the tree of parents merely being the 
inverse tree of the latter. This tree of children is equivalent to the Bettis’s incidence 
coefficients, when brought into algebraic form [34] or to the incidence matrices 
defined by Coxeter [ 151. Such a tree provides the full information on the Delaunay 
graph of simplices; for instance, all neighbors of a site i are the set of children 
((1 :j)} of (0:i). B u t f rom a closer examination of this tree, we learn that we also 
have full information about the dual Voronoi construction. We note (di : i)* is a 
dual Voronoi tile (a general convex polytope). The element (0 : i)* is known: it is 
the center of the circumscribing sphere to the simplex (d: i). 

More generally, the correspondence is 

(di : i) T (d- di : i)* (11) 

and vectors belonging to conjugate sets are orthogonal. 
For instance, the usual description of the Voronoi cell Vi relative to the atom i 

(0 : i) is to build the convex hull of the points obtained by applying the duality 
transformation to the last generation of the children of (0 : i). 

We show now that is possible to make precise all intermediate dual elements, and 
to give a complete description of each tile (di : i)* in terms of its boundary. Let us 
suppose that all (dj : j)* are known, for dj< di; then (di : i)* is the convex polytop, 
the boundary of which are cycles of the form 

(di : i)* = ((di- 1 : jr)*, . . . . (di- 1 : j,)*). (12) 

The set j1 . . . jj is determined in the following way: 

take the dual of (di : i)* + (d - di : i) 

take its children (d-di+ 1 : j,), . . . . (d-di+ 1 : ji) 
transform back by duality. 

This is a recursive proof for obtaining all Voronoi tiles (di : i)*; we converted it 
into an iterative algorithm by iterating over the dimension di* from 0 to d. 

The scheme we propose is very economical for a global Delaunay and Voronoi 
construction and is valid independently of the dimension and the imbedding 
manifold. In the case of Delaunay-Voronoi construction on infinite manifolds, or 
manifolds with boundaries, the preceding description may be completed for the 
irregular “outer cells” (1 : i)*: if (d- 1 : i) has only one son, say (d : j) instead of 
two, a ghost son, mirror point of (0 : j)* with respect to the plane defined by 
(d - 1 : i), may be introduced in order to define unambiguously (11). Another way 
we use here, is to state that (1 : i)* is a half-line starting from (0 : j)*, orthogonal to 
(d - 1 : i). We retained this last solution. 

In the next section, we discus the algorithm on an example, and also its 
performance and improvements. 
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3. NUMERICAL IMPLEMENTATION AND EXAMPLE 

We implemented the preceding algorithm in APL, in about one hundred 
statements, in a form easily convertible into a more efficient language at execution 
time (FORTRAN, even on a vector computer). The trees (Delaunay simplices, 
children, Voronoi tesselation) are implemented as vectors, with one or two levels of 
pointers. For each dimension di, the lexicographic order is maintained on the 
Delaunay tiles in order to allow fast search. We illustrate the algorithm on an 
example, which may be checked by hand. We apply the tesselation creation to a set 
of five points in the Euclidian plane; the coordinates are given in Table I. 

In Table II, we indicate in the third column the family of Delaunay simplices 
obtained at the end of the first phase, as the ordered list of the indices of its vertices. 
The Voronoi vertices which are obtained simultaneously as the centers of the 
circumscribing spheres to the d-dim. Delaunay simplices are reported in column 3. 
In column 4 of Table II, we report the children of (di : i). In the last column appear 
the Voronoi tiles, which, according to the prescription (12), are built upwards. We 
use a simplified notation [...I instead of ( : )* in this table, omitting even 0: 

We show the corresponding results on Fig. 3. Namely there appear irregular 
edges obtained only in the downwards Boundary operation of the Delaunay 
tesselation. We mention also that the subsets of a regular Voronoi tile are cycles 
(BB (di : i)* = 0 mod 2), and that the cells on the boundary are very naturally 
described. We did not discuss here the case of degeneracy, since this has been 
widely done by others. 

The structure of the algorithm given in the preceding section is simple and 
flexible. It exhibits clearly the parentship of tiles of the whole tesselation. Even in 
this form, its performances are very different, depending on which side of the list 
one selects the unmarked tiles to be processed. Indeed, contrary to the Boundary 
operation which is straightforward, the Primitive operation is more costly. Let n be 
the number of initial points; the implementation of Theorem 2 requires n d-dim. 
spheres determination (a linear system of rank d) and n distance comparisons for 
each sphere, in order to build all normal adjacent (di + I)-dim. tiles to a &-dim. 
one. In fact, if one requires only one new normal (di + 1 )-dim. tile, an alternative 
Primitive procedure Pl may be used, the cost of which is the construction of only n 
spheres [33]. 

TABLE I 

Set of Delaunay Vertices 

Designations Coordinates 

(0) (0 : 0) 0.55, 0.6 
(1) (0: 1) 0.1, 0.3 
(2) (0: 2) 0.4, 0.85 
(3) to:31 0.7, 0.9 
(4) (0 : 4) 0.9, 0.3 
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TABLE II 

An Example 

Dim Index 
Delaunay 
simpliccs Children Voronoi tiles di* 

0 (0) 
(1) 
(2) 
(3) 
(4) 

1 (0) 
(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 

2 (0) 
(1) 
(2) 
(3) 

(0) 
(1) 
(2) 
(3) 
(4) 

(0 1) 
(0 2) 
(0 3) 
(0 4) 
(1 2) 
(1 4) 
(2 3) 
(3 4) 

(0 1 2) 
(0 1 4) 
(0 2 3) 
(0 3 4) 

(1 :O, 1,2,3) 
(1 :0,4,5) 
(1 : 1,4,6) 
(1:2,6,7) 
(1 : 3, 5,7) 

(20) 
(20) 
(2 : 1,2) 
(2 : 1,3) 
(2:2,3) 
(2:l) 
(2:2) 
(2:0,3) 

(null) 
(null) 
(null) 
(null) 

CCC~lC~l1CC~lC~11CC~IC3ll~~~lC3lll 2 
cccolc11lccol(1 :4)lCClW : VII 
~m1c211m1(~:4)1~c21(~:6)11 
ccc21c311ccw~ : 6)1cc31u : 7~11 
ccc1Ic31lcc~I(1 : 5)1CC31(1 : 7111 

ccolclll 
cc01c211 
cc21c311 
cc~Ic311 
CCOl(l : 411 
CCll(1 : 5)l 
CPl(1 : 611 
CC31(1 : 7)l 

PI 0 
Cl1 
PI 
c31 

(1:6)* 

\ 3 
2 

2. 
(1:4h (1:7)* 

* 

O* 
0 3' 

1 14 

1+ 

T 
(l:SP 

FIG. 3. Graphical representation of the two dual tesselations of the example: thin line (Delaunay); 
thick line (Voronoi). Note the anomalous l-dim. tiles (1 4)(3 4)(1 2). 
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DEFINITION 2. Primitive 1. Let t a &-dim. tile be given; then the (di+ I)-dim. 
tile t u xj with minimal circumradius is a new normal tile. 

If one builds the Delaunay tesselation by selecting the unmarked tiles on the left 
(lower dimension) of the list of tiles being created. Primitive operations of general 
type are mainly required, and the cost of the algorithm would be 0(n3) at least. By 
selecting the unmarked tiles on the right (the unmarked simplices existing in the list 
of highest dimension), one builds as fast as possible a first-dimensional Delaunay 
tile. The procedure Primitive 1 just discussed may be used as an alternative to our 
more general (and costly) primitive. One exhausts then the d-dimensional Delaunay 
tiles, with repeated operations of Boundary and Primitive. Here again, a second 
procedure for Primitive of Ogawa et al. may be used (of order n), instead our more 
general (but costly) one: 

DEFINITION 3. Primitiue 2. For a (d- 1)-dimensional tile t, parent of an 
existing (d-dimensional) tile, find the vertex xj (if any) in the half-space delimited by 
the plane containing t, opposite to the existing child, such that the sphere 
circumscribed to (x, u t) has the minimal radius. 

Once the d-dim. tiles are exhausted, it is possible to complete the tree of tiles 
downwards over dimension by the fast Boundary operation. In this way, the 
Delaunay tesselation realization becomes a frontal growth process. It seems to be of 
order n2, namely n Primitive 2 operations. In fact, it can be reduced further to order 
12 by restricting the sites to be considered in the primitive process to a 
neighborhood of the tile t defined by the usual metric distance [26, 33 3. For this 
purpose, we also propose a conjecture similar to Euler’s theorem, which allows 
checking if the environment of a tile is completed. 

Conjecture 1. Let np be the number of tiles of dim. p, children of a given tile 
(di : i). Then 

d 
Z((di:i))=(-1)” C (-l)Pnp (13) 

p = di 

is an indicatrix of completeness of environment, valued to 0 for incomplete embed- 
ding, to 1 for full embedding. 

TABLE III 

Voronoi Vertices 

Designation Coordinates Radius 

[O](O : 0); -0.237, 0.5820 0.313 
[l](O : l)* -0.5, 0.416 0.416 
[2](0 : 2); -0.566,0.7800 0.180 
[3](0 : 3)* -0.875,0.6250 0.325 
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The reader may check the plausibility of our conjecture on examples. Table II 
and Fig. 3 may be used. With the last refinement, the full explicitation of the tree of 
children becomes necessary, and it must be built simultaneously to the Delaunay 
tesselation. This would allow taking into account the full information about the 
Delaunay tesselation at its actual stage of formation, and also avoiding any useless 
primitive operation. 

4. CONCLUSION 

In this paper, we collected and discovered (merely rediscovered) a lot of fun- 
damental results which allowed us to gain a better insight into the structure of the 
dual Delaunay and Voronoi tesselations. Contrary to other efficient methods for 
constructing the Delaunay tesselation, where the points are added one by one and 
the sets revised, like [29, 35, 361, the one presented here is global, independent of 
the dimension of the space, and conceptually very simple. The algorithm proposed 
is able to be vectorized. It also realizes an illustration of algebraic topology (duality 
mainly), since it possesses a natural orientation convention defined in the text after 
Theorem 1. The new results are mainly the definition of normal tiles, which uses the 
smallest d-dimensional sphere circumscribing a &dimensional simplex, and an 
original application of the duality, which allows a full description of any Voronoi or 
Delaunay tile in terms of its boundary tiles. Note also that the duality is symmetric; 
i.e., it may be used in the reverse way. Our conjecture about the completeness of a 
neighborhood seems also an interesting property. 
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